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Abstract

We review the different block bootstrap methods for time series, and present them

in a unified framework. We then revisit a recent result of Lahiri (1999b) comparing the

different methods and give a corrected bound on their asymptotic relative efficiency;

we also introduce a new notion of finite-sample “attainable” relative efficiency. Finally,

based on the notion of spectral estimation via the flat-top lag-windows of Politis and

Romano (1995), we propose practically useful estimators of the optimal block size for

the aforementioned block bootstrap methods. Our estimators are characterized by the

fastest possible rate of convergence which is adaptive on the strength of the correlation

of the time series as measured by the correlogram.

Key words: Bandwidth Choice, Block Bootstrap, Resampling, Subsampling, Time

Series, Variance Estimation.

∗We are indebted to Dr. Andrew Patton of the London School of Economics for compiling a Matlab

computer code for practical implementation of the block selection algorithm presented here; the code is
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1 INTRODUCTION

Implementation of block bootstrap methods for dependent data typically requires selection

of b, a block length or an expected block length; cf. Künsch (1989), Liu and Singh (1992),

Politis and Romano (1992), Politis and Romano (1994)—see also the related work of Carl-

stein (1986). Apart from specifying the rate at which b must grow with the sample size,

N , available results typically offer little guidance on how to choose b. Exceptions are the

results of Hall, Horowitz, and Jing (1995) and Bühlmann and Künsch (1999) who provide

data-dependent methods for selecting b for the moving blocks bootstrap of Künsch (1989)

and Liu and Singh (1992); see also the review by Berkowitz and Kilian (2000).

In this note we review some different ways of implementing the block bootstrap for time

series, and present them in a unified framework. We give a comparison between the moving

blocks bootstrap and the stationary bootstrap, thus rectifying an incorrect claim by Lahiri

(1999b). In addition, we provide a novel methodology of automatic selection/estimation of

optimal block sizes; the methodology is based on the notion of spectral estimation via the

flat-top lag-windows of Politis and Romano (1995) that possess many favorable properties.

Finally, we present some illustrative simulations and introduce a new notion of finite-sample

“attainable” relative efficiency for comparing different block bootstrap methods.

2 BASIC FRAMEWORK

Suppose X1, . . . ,XN are observations from the (strictly) stationary real-valued sequence

{Xn, n ∈ Z} having mean µ = EXt, and autocovariance sequence R(s) = E(Xt−µ)(Xt+|s|−
µ). Both µ and R(·) are unknown, and the objective is to obtain an approximation to the

sampling distribution of X̄N = N−1
∑N

t=1 Xt. Since typically X̄N is asymptotically normal,

estimating the variance σ2
N = V ar(

√
NX̄N ) = R(0) + 2

∑N
s=1(1 − s/N)R(s) is important.

Sufficient conditions for the validity of a central limit theorem for X̄N are given by a

moment condition and a mixing (weak dependence) condition that is conveniently defined

by means of the strong mixing coefficients; see e.g. Rosenblatt (1985). In particular,

we say that the series {Xt, t ∈ Z} is strong mixing if αX(k) → 0, as k → ∞, where

αX(k) = supA,B |P (A ∩ B) − P (A)P (B)|, and A ∈ F0−∞, B ∈ F∞
k are events in the σ-
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algebras generated by {Xn, n ≤ 0} and {Xn, n ≥ k} respectively. If in addition

E|X1|2+δ < ∞, and
∞∑

k=1

α
δ/(2+δ)
X (k) < ∞ (1)

for some δ > 0, then the limit of σ2
N exists (denoted by σ2∞ =

∑∞
s=−∞ R(s)), and in addition,√

N(X̄N − µ) L=⇒ N(0, σ2∞) as N → ∞; see Ibragimov and Linnik (1971).

Many estimators of σ2∞ have been proposed in the literature; see e.g. Politis et al.

(1999) for some discussion. In the next section, we focus on estimators constructed via block

resampling in two popular forms: the circular/moving blocks bootstrap and the stationary

bootstrap,1 and we address the important practical problem of estimation of the optimal

block size. An illustration of the proposed block selection algorithm and some examples are

given in Section 4. Technical proofs are provided in the appendix.

3 PRACTICAL BLOCK SIZE CHOICE

3.1 Brief review of block bootstrap methods

A general block bootstrap algorithm can be defined as follows:

1. Start by ‘wrapping’ the data {X1, . . . ,XN} around a circle, i.e., define the new series

Yt := Xtmod(N)
, for t ∈ N, where mod(N) denotes “modulo N”.

2. Let i0, i1, . . . , be drawn i.i.d. with uniform distribution on the set {1, 2, . . . , N}; these

are the starting points of the new blocks.

3. Let b0, b1, . . . , be drawn i.i.d. from some distribution Fb(·) that depends on a pa-

rameter b (that may depend on N and will be specified later); these are the block

sizes.

4. Construct a bootstrap pseudo-series Y ∗
1 , Y ∗

2 , . . . , as follows. For m = 0, 1, . . ., let

Y ∗
mbm+j := Yim+j−1 for j = 1, 2, . . . , bm.

1There is yet another block bootstrap methodology that has been recently introduced, namely the tapered

block bootstrap. Tapering the blocks before allowing them to be included in a bootstrap pseudo-sample has

many favorable properties including a faster rate of convergence; for more details see Paparoditis and Politis

(2001, 2002).
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This procedure defines a probability measure (conditional on the data X1, . . . ,XN )

that will be denoted P ∗; expectation and variance with respect to P ∗ are denoted E∗

and V ar∗ respectively.

5. Finally, we focus on the first N points of the bootstrap series and construct the boot-

strap sample mean Ȳ ∗
N = N−1

∑N
i=1 Y ∗

i . The corresponding estimate of the asymptotic

variance of the sample mean is then given by V ar∗(
√

NȲ ∗
N ).

We will explicitly address two interesting cases:

A. The distribution Fb is a unit mass on the positive integer b; this is the circular bootstrap

(CB) of Politis and Romano (1992). Its corresponding estimate of σ2∞ will be denoted σ2
b,CB .

B. The distribution Fb is a Geometric distribution with mean equal to the real number

b; this is the stationary bootstrap (SB) of Politis and Romano (1994). Its corresponding

estimate of σ2∞ will be denoted σ2
b,SB.

The circular bootstrap is an asymptotically equivalent variation of the moving blocks

(MB) bootstrap of Künsch (1989) and Liu and Singh (1992) whose estimate of σ2∞ may

be simply written as σ̂2
b,MB = b

Q

∑Q
i=1(X̄i,b − X̄N )2; here X̄i,b = b−1

∑i+b−1
t=i Xt, and Q =

N − b + 1. Note that the estimator σ̂2
b,MB is found in the literature in many asymptotically

equivalent variations and under many different names, including the following: Bartlett

spectral density estimator (at the origin)—Bartlett (1946, 1950); moving block bootstrap—

Künsch (1989), Liu and Singh (1992); full-overlap subsampling—Politis and Romano (1993);

and overlapping batch means estimator—Schmeiser (1982, 1990).

Note that both the circular bootstrap and the stationary bootstrap share with the

moving blocks bootstrap of Künsch (1989) and Liu and Singh (1992) the property of

higher-order2 accurate estimation of the distribution of the sample mean after standard-

ization/studentization; see Lahiri(1991, 1999a), Politis and Romano (1992), and Götze and

Künsch (1996).
2Higher-order accuracy is typically defined by a comparison to the Central Limit Theorem that is concur-

rently available under (1); thus, the aforementioned bootstrap schemes are all more accurate as compared

to the benchmark of the standard normal approximation to the distribution of the standardized and/or

studentized sample mean.

4



Under mixing and moment conditions, consistency of both σ̂2
b,CB and σ2

b,SB was shown in

Politis and Romano (1992, 1994). In a recent paper, Lahiri (1999b) provides a detailed ap-

proximation to the first first two moments of σ̂2
b,CB and σ2

b,SB that is very useful and is given

below. To state it, we define the spectral density function as g(w) :=
∑∞

s=−∞ R(s) cos(ws).

Theorem 3.1 [Lahiri (1999b)] Assume E|Xt|6+δ < ∞, and
∑∞

k=1 k2(αX(k))
δ

6+δ < ∞
for some δ > 0. If b → ∞ as N → ∞ but with b = o(N1/2), then we have:

Bias(σ̂2
b,CB) = Eσ̂2

b,CB − σ2
∞ = −1

b
G + o(1/b); (2)

V ar(σ̂2
b,CB) =

b

N
DCB + o(b/N); (3)

Bias(σ̂2
b,SB) = Eσ̂2

b,SB − σ2
∞ = −1

b
G + o(1/b); (4)

V ar(σ̂2
b,SB) =

b

N
DSB + o(b/N); (5)

in the above, DCB = 4
3g2(0), DSB =

(
4g2(0) + 2

π

∫ π
−π(1 + cos w)g2(w)dw

)
, and G =∑∞

k=−∞ |k|R(k).

From the above theorem it is apparent that the SB is less accurate than the CB for esti-

mating σ2∞. Although the two methods have similar bias (to the first order), the SB has

higher variance due to the additional randomization involved in drawing the random block

sizes.

To compare the two methods, we may define the asymptotic relative efficiency (ARE)

of the SB relative to the CB as

ARECB/SB := lim
N→∞

MSEopt,CB

MSEopt,SB
,

where MSEopt,CB := infb MSE(σ̂2
b,CB), and MSEopt,SB := infb MSE(σ̂2

b,SB).

From the previous remarks, it is intuitive that this ARECB/SB is less than one. Nev-

ertheless, contrary to a claim in Lahiri (1999b), this ARECB/SB is always bounded away

from zero; the subject of the following lemma is a corrected bound on the ARECB/SB .

Lemma 3.1 Under the assumptions of Theorem 3.1 we have:

0.331 ≤ ARECB/SB ≤ 0.481.
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Lemma 3.1 gives a precise bound on the price we must pay in order to have a block-

bootstrap method that generates stationary bootstrap sample paths; the stationarity of

bootstrap sample paths is a convenient property—see e.g. Politis and Romano (1994) or

White (2000).

Nevertheless, the above definition of asymptotic relative efficiency involves a comparison

of the theoretically optimized (with respect to block size choice) SB and CB methods;

but the optimal block size is never known in practice, and—more often than not—the

block size used is suboptimal. Interestingly the SB method is less sensitive to block size

misspecification as compared to CB and/or the moving blocks bootstrap—see Politis and

Romano (1994). We achieve a more realistic comparison of the two methods based on the

new notion of finite-sample attainable relative efficiency introduced in Section 4.

The problem of empirically optimizing the block size choice is as challenging as it is

practically important. In the next two subsections a new method of optimal block size

choice is put forth for both SB and CB methods.

3.2 Choosing the expected block size for the stationary bootstrap

From Theorem 3.1 it follows that for the stationary bootstrap we have:

MSE(σ̂2
b,SB) =

G2

b2
+ DSB

b

N
+ o(b−2) + o(b/N).

It now follows that the large-sample MSE(σ2
b,SB) is minimized if we choose

bopt,SB =
(

2G2

DSB

)1/3

N1/3. (6)

Using the optimal block size bopt,SB we achieve the optimal MSE, which is given by

MSEopt,SB ≈ 3
22/3

G2/3D
2/3
SB

N2/3
. (7)

The quantities G and DSB involve the unknown parameters
∑∞

k=−∞ |k|R(k), σ2∞ =∑∞
k=−∞ R(k) = g(0), and 1

π

∫ π
−π(1 + cos w)g2(w)dw; these must be (accurately) estimated

in order to obtain a practically useful procedure.

To achieve accurate estimation of the infinite sum
∑∞

k=−∞ |k|R(k) above, as well as the

infinite sum
∑∞

k=−∞ R(k) cos(wk) that equals the spectral density g(w), we propose using

the ‘flat-top’ lag-window of Politis and Romano (1995). Thus, we estimate
∑∞

k=−∞ |k|R(k)
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by
∑M

k=−M λ(k/M)|k|R̂(k), where R̂(k) = N−1
∑N−|k|

i=1 (Xi − X̄N )(Xi+|k| − X̄N ), and the

function λ(t) has a trapezoidal shape symmetric around zero, i.e.,

λ(t) =




1 if |t| ∈ [0, 1/2]

2(1 − |t|) if |t| ∈ [1/2, 1]

0 otherwise.

Similarly, we estimate g(w) =
∑∞

k=−∞ R(k) cos(wk) by ĝ(w) =
∑M

k=−M λ(k/M)R̂(k) cos(wk).

Plugging in our two estimators in the expressions for G and DSB , we arrive at the estimators

Ĝ =
M∑

k=−M

λ(k/M)|k|R̂(k) and D̂SB =
(

4ĝ2(0) +
2
π

∫ π

−π
(1 + cos w)ĝ2(w)dw

)
. (8)

Thus, our estimator for the (expected) block size choice is given by:

b̂opt,SB =

(
2Ĝ2

D̂SB

)1/3

N1/3. (9)

One reason for using the flat-top lag-window λ(t) is that smoothing with the flat-top

lag-window is highly accurate, taking advantage of a possibly fast rate of decay of the

autocovariance R(k), and thus achieving the best rate of convergence possible. In order to

investigate the asymptotic performance of our suggested b̂opt,SB we give the following result.

Theorem 3.2 Assume the conditions of Theorem 3.1 hold.

(i) Assume that
∑∞

s=−∞ |s|(r+1)|R(s)| < ∞ for some positive integer r; then taking M

proportional to N1/(2r+1) yields

b̂opt,SB = bopt,SB(1 + OP (N−r/(2r+1))).

(ii) If R(k) has an exponential decay, then taking M ∼ A log N , for some given non-negative

constant A, yields

b̂opt,SB = bopt,SB(1 + OP (
√

log N√
N

)). (10)

(iii) If R(k) = 0 for |k| greater than some integer q, then taking M = 2q yields

b̂opt,SB = bopt,SB(1 + OP (
1√
N

)).
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Besides the fast convergence and adaptivity to the underlying correlation structure,

another equally important reason for using the flat-top lag-window is that choosing the

bandwidth M for the flat-top lag-window in practice is intuitive and feasible by a simple

inspection of the correlogram, i.e., the plot of R̂(k) vs. k. In particular, Politis and Romano

(1995) suggest looking for the smallest integer, say m̂, after which the correlogram appears

negligible, i.e., R̂(k) � 0 for k > m̂. Of course, R̂(k) � 0 is taken to mean that R̂(k) is not

significantly different from zero, i.e., an implied hypothesis test.3 After identifying m̂ on

the correlogram, the recommendation is to just take M = 2m̂.

We now further discuss the M = 2m̂ recommendation in the specific context of an

exponential decay of R(k); such a fast decay is often encountered, e.g., all stationary ARMA

models are characterized by such a fast decay—cf. Brockwell and Davis (1991). First

note that the ‘recipe’ M = 2m̂, where m̂ is gotten by a correlogram inspection, does not

contradict the recommendation M ∼ A log N offered in Theorem 3.2 (ii). On the contrary,

the M = 2m̂ recipe should be viewed as an empirical way to obtain the optimal constant

A in M ∼ A log N . To see this, recall that the autocovariance R(k) of a stationary ARMA

model satisfies R(k) � const × ξk, for large k, where ξ is essentially the modulus of the

characteristic polynomial root that is closest to the unit circle. Let the autocorrelations

be defined as ρX(k) := R(k)/R(0); therefore, the estimated autocorrelations are given by

ρ̂X(k) := R̂(k)/R̂(0) � Cξk + OP (1/
√

N) for some constant C. To say that R̂(k) � 0 for

k > m̂ means that ρ̂X(m̂ + 1) is not significantly different from zero; this in turn means

that −c/
√

N < ρ̂X(m̂+1) < c/
√

N for some constant c. Putting this all together, it follows

that with probability tending to one we have

A1 log N < m̂ < A2 log N

for some positive constants A1, A2.

Perhaps the most attractive feature of the M = 2m̂ recipe is its adaptivity to different

correlation structures. Arguments similar to those just given show that, if the autocovari-

ance R(k) has a polynomial (as opposed to exponential) decay, then m̂ grows at a polynomial
3A precise formulation of this implied hypothesis test is given in Politis (2001) and can be described

as follows: Let ρ(k) = R(k)/R(0), ρ̂(k) = R̂(k)/R̂(0), and let m̂ be the smallest positive integer such

that |ρ̂(m̂ + k)| < c
!

log N/N , for k = 1, . . . , KN , where c > 0 is a fixed constant, and KN is a positive,

nondecreasing integer-valued function of N such that KN = o(log N). Taking log to denote logarithm with

base 10, recommended practical values for the above are c = 2 and KN = max(5,
√

log N).
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rate, as is advisable in that case—see Theorem 3.2 (i). In addition, if R(k) = 0 for |k| > q

(but R(q) 
= 0), then it is easy to see that m̂
P−→ q; this corresponds to the interesting

case of MA(q) models, i.e., the set-up of Theorem 3.2 (iii). Thus, the recipe M = 2m̂, is

an omnibus rule-of-thumb that automatically gives good bandwidth choices without having

to prespecify the correlation structure. Finally, note that the simple, correlogram-based,

M = 2m̂ recipe can not be applied to traditional lag-windows; it is only applicable in

connection with the flat-top lag-windows of Politis and Romano (1995).

3.3 Choosing the block size for the circular bootstrap

Theorem 3.1 similarly implies that for the circular bootstrap we have:

MSE(σ̂2
b,CB) =

G2

b2
+ DCB

b

N
+ o(b−2) + o(b/N).

It now follows that the large-sample MSE(σ2
b,CB) is minimized if we choose

bopt,CB =

[(
2G2

DCB

)1/3

N1/3

]
(11)

where [x] indicates the closest integer to the real number x. Using the optimal block size

bopt,CB we achieve the optimal MSE, which is now given by

MSEopt,CB ≈ 3
22/3

G2/3D
2/3
CB

N2/3
. (12)

Plugging in our estimator ĝ for g in the expression for DCB we obtain

D̂CB =
4
3
ĝ2(0). (13)

Estimating G by Ĝ as given in (8), we are led to the following optimal block size estimator:

b̂opt,CB =



(

2Ĝ2

D̂CB

)1/3

N1/3


 . (14)

The behavior of b̂opt,CB is similar to that of b̂opt,SB as the following theorem shows.

Theorem 3.3 Assume the conditions of Theorem 3.1 hold.

(i) Assume that
∑∞

s=−∞ |s|(r+1)|R(s)| < ∞ for some positive integer r; then taking M

proportional to N1/(2r+1) yields

b̂opt,CB = bopt,CB(1 + OP (N−r/(2r+1))).
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(ii) If R(k) has an exponential decay, then taking M ∼ A log N , for some given non-negative

constant A, yields

b̂opt,CB = bopt,CB(1 + OP (
√

log N√
N

)). (15)

(iii) If R(k) = 0 for |k| greater than some integer q, then taking M = 2q yields

b̂opt,CB = bopt,CB(1 + OP (
1√
N

)).

Note that the moving blocks bootstrap variance estimator σ̂2
b,MB and the circular boot-

strap variance estimator σ̂2
b,CB have identical4 (at least to first order) bias and variance;

consequently, the large-sample optimal block size is the same, i.e., bopt,MB ≡ bopt,CB . There-

fore, the estimator b̂opt,CB can be considered to be an estimator of the optimal block size

for the moving blocks bootstrap as well, i.e., b̂opt,MB ≡ b̂opt,CB . As Theorem 3.3 shows,

our estimator b̂opt,MB has a faster rate of convergence than that of the block size estima-

tor proposed in Bühlmann and Künsch (1999), and the difference is especially pronounced

when the autocovariance R(k) has a fast decay. To elaborate, recall that the Bühlmann

and Künsch (1999) block size estimator, denoted by b̄opt,MB, generally satisfies

b̄opt,MB = bopt,MB(1 + OP (N−2/7)).

By contrast, note that

b̂opt,MB = bopt,MB(1 + OP (N−1/3))

under any of the autocovariance decay conditions considered in Theorem 3.3; this is true,

for example, under the slowest decay condition, i.e., condition (i) with r = 1. If the

autocovariance R(k) happens to have a faster decay, then b̂opt,MB becomes more accurate

whereas the accuracy of b̄opt,MB is not improved; in the interesting example of exponential

decay of R(k), Theorem 3.3 (ii) shows that

b̂opt,MB = bopt,CB(1 + OP (
√

log N√
N

)).

Thus, b̄opt,MB is outperformed by b̂opt,MB under a wide range of conditions, namely any of

the conditions considered in Theorem 3.3; the constrast is more dramatic under conditions

(ii) and (iii).
4As shown in Künsch (1989), σ̂2

b,MB satisfies eq. (2) and (3) with the same constants as given for the

circular case. In other words, Bias(σ̂2
b,MB) = − 1

b
G + o(1/b), and V ar(σ̂2

b,MB) = b
N

4
3
g2(0) + o(b/N).
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Finally note that, although the subsampling/cross-validation method for block size se-

lection of Hall, Horowitz and Jing (1995) is intuitively appealing, no information on its rate

of convergence (besides consistency) has yet been established.

4 ILLUSTRATION OF BLOCK SELECTION ALGORITHM

Having presented the stationary and the circular bootstrap in a unified way, we have com-

pared their performances in Lemma 3.1 which is a corrected version of earlier results by

Lahiri (1999b). Noting that the performance of either method crucially depends on the

block size used, we have presented a novel methodology of selection/estimation of optimal

block sizes. The methodology is based on the notion of spectral estimation via the flat-top

lag-windows of Politis and Romano (1995), and it is outlined below.

Block selection algorithm via flat-top lag-windows

1. Identify the smallest integer, say m̂, after which the correlogram appears negligible,

i.e., R̂(k) � 0 for k > m̂, using the procedure introduced in Politis (2001) and outlined

in the footnote to Section 3.2 in this paper.

2. Using the value M = 2m̂, estimate G, DSB and DCB by Ĝ, D̂SB and D̂CB as given

in (8) and (13).

3. Estimate the optimal (expected) block size b̂opt,SB for the stationary bootstrap as in

(9), and the optimal block size b̂opt,CB for the circular and/or moving blocks bootstrap

as in (14).

Note that the above algorithm is fully automatic.5 Indeed, Dr. Andrew Patton of the

London School of Economics has compiled a Matlab computer code for implementing the

above block selection algorithm via flat-top lag-windows; his code is now made publicly

available from his website: http://fmg.lse.ac.uk/∼patton/code.html.
5Nevertheless, it should be stressed that valuable information will invariably be gained by looking at

the correlogram, i.e., a plot of ρ̂(k)) vs. k; the automatic procedure should complement—rather than

replace—this correlogram examination.
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bopt,SB bopt,CB

ρ = 0.7, N = 200 12.0043 [18.52]

N = 800 19.0557 [29.40]

ρ = 0.1, N = 200 1.3106 [2.31]

N = 800 2.0805 [3.66]

ρ = −0.4, N = 200 2.7991 [5.70]

N = 800 4.4432 [9.04]

Table 1: Theoretical optimal block sizes bopt,SB and bopt,CB ; the brackets [·] indicate

‘closest integer’ to the entry.

Based on Dr. Patton’s code a small simulation was conducted in which time series

were generated of length N (with N being either 200 or 800), from the AR(1) model:

Xt = ρ Xt−1 + Zt, with {Zt} ∼ i.i.d. N(0,1). The values for the parameter ρ were chosen

as 0.7, 0.1, and -0.4. For each ρ and N combination, 1000 series were generated. Table 1

contains the theoretical values of the optimal block sizes bopt,SB and bopt,CB that can be

analytically calculated from (6) and (11) by our knowledge regarding the underlying AR(1)

model.

Table 2 contains the mean, standard deviation, and Root Mean Squared Error (RMSE)

computed over the 1000 replications of the quantity b̂opt,SB/bopt,SB in each of the different

cases. Since the AR(1) model satisfies the assumptions of Theorem 3.2 (ii) we expect

that b̂opt,SB/bopt,SB = 1 + OP (
√

log N/
√

N). This theoretical result from Theorem 3.2 is

supported by the simulation; in particular, note the approximate halving of the RMSE

going from the case N = 200 to N = 800. Interestingly, in the case ρ = 0.7, the bias of

b̂opt,SB/bopt,SB is significant, yielding an important contributing to the RMSE; by contrast,

in the cases where ρ is 0.1 or -0.4, the bias seems negligible. For illustration purposes,

Figure 1 shows a histogram of the distribution of our estimator b̂opt,SB for ρ = 0.7 in the

two cases: Figure 1(a) for N = 200 and Figure 1(b) for N = 800.
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b̂opt,SB/bopt,SB Mean St. Dev. RMSE

ρ = 0.7, N = 200 0.646 0.383 0.521

N = 800 0.619 0.222 0.441

ρ = 0.1, N = 200 1.030 0.858 0.858

N = 800 0.827 0.421 0.455

ρ = −0.4, N = 200 1.107 0.704 0.712

N = 800 1.013 0.334 0.334

Table 2: Empirical Mean, Standard Deviation, and Root Mean Squared Error (RMSE)

of the quantity b̂opt,SB/bopt,SB.

Table 3 is similar to Table 2 but focuses instead on the quantity b̂opt,CB/bopt,CB . Com-

paring line-by-line the entries of Table 3 to those of Table 2, we notice an important pattern:

the RMSEs of Table 2 are much smaller than those of Table 3. Coupled with the fact that

bopt,SB is invariably smaller than bopt,CB—see Table 1—it follows that b̂opt,SB is a more ac-

curate estimator than b̂opt,CB. In other words, estimating the optimal (expected) block size

in the stationary bootstrap seems to be an easier problem than estimating the optimal block

size in the circular and/or moving blocks bootstrap. In addition, recall that the stationary

bootstrap is less sensitive to block size misspecification; see e.g. Politis and Romano (1994).

b̂opt,CB/bopt,CB Mean St. Dev. RMSE

ρ = 0.7, N = 200 0.523 0.656 0.811

N = 800 0.471 0.186 0.561

ρ = 0.1, N = 200 1.155 1.543 1.551

N = 800 1.012 0.554 0.554

ρ = −0.4, N = 200 1.868 2.311 2.469

N = 800 1.371 0.565 0.676

Table 3: Empirical Mean, Standard Deviation, and Root Mean Squared Error (RMSE)

of the quantity b̂opt,CB/bopt,CB .

13



The above considerations motivate the introduction of a new way of comparing the

performance of the two methods. Thus, we now define the finite-sample “attainable” relative

efficiency (FARE) of the SB relative to CB as

FARECB/SB :=
MSEb̂opt,CB

MSEb̂opt,SB

,

where MSEb̂opt,CB := MSE(σ̂2
b̂opt,CB

), and MSEb̂opt,SB := MSE(σ̂2
b̂opt,SB

). Note that the

FARECB/SB depends on the sample size N although it is not explicitly denoted. More

importantly, the FARECB/SB compares the performance of SB to that of CB when both

are used in connection with estimated optimal block sizes which is the case of practical

interest; recall that the ARECB/SB compared the MSEs of SB and CB when those were

used in connection with the true optimal block sizes (assumed known).

It would be illuminating to be able to give some bounds on the FARECB/SB in the spirit

of Lemma 3.1 but this seems too difficult for the present moment. Nevertheless, from our

previous remarks, it is expected that the FARECB/SB will be greater than the ARECB/SB .

Although theoretical analysis seems to be intractable, we can investigate the behavior of

FARECB/SB via simulation.

Table 4 reports the performance (bias, MSE and FARE) of the two methods based on

estimated block sizes in the setting of our AR(1) example. To construct the entries of Table

4, the following procedure was followed: for each generated series, the estimated optimal

block sizes (for SB and CB) were computed using the algorithm of this section; then the

SB and CB estimators of σ2∞ for that series were computed using those estimated optimal

block sizes that were specific to that particular series.

Table 4 is quite informative. First note that—except for the case of negative dependence—

the FAREs are very large, definitely outside the maximum value of 0.481 prescribed for the

AREs by Lemma 3.1. Interestingly, the two positive dependence cases (ρ = 0.7 and 0.1)

yields FAREs close to unity in the small-sample case (N = 200); this is strong indication

of the block size effects previously alluded to. The fact that the FARE
CB/SB

is small (and

potentially quite close to ARE
CB/SB

) when ρ = −0.4 could be attributed to a reduced

sensitivity of the two estimators of σ2∞ to block size in this case.

We also note that in all cases the FAREs seem to drop when the sample size increases.

To explain this phenomenon, we offer the following conjecture:

14



Conjecture. Under the assumptions of Theorem 3.2 (with the possible exception of the

r = 1 case in part (i)), we conjecture that FARE
CB/SB

→ ARE
CB/SB

as n → ∞.

The rationale behind the above conjecture is the following; to fix ideas, consider the

clauses of part (ii) of Theorem 3.2 that corresponds to the exponential decay associated

with ARMA models—including our AR(1) example. We thus have

b̂opt,SB = bopt,SB(1 + OP (
√

log N√
N

)) = bopt,SB + OP (
√

log N

N1/6
) (16)

where we have used the fact that bopt,SB is of the order of N1/3. Thus, we not only have that

b̂opt,SB/bopt,SB → 1 in probability; we also have b̂opt,SB − bopt,SB → 0 albeit at a very slow

rate. Therefore, for (really) large samples, the values of b̂opt,SB and bopt,SB should approach

each other. A similar behavior holds for b̂opt,CB , thus giving support to our conjecture.

However, note that the rate of the (alleged) convergence of FARE
CB/SB

to ARE
CB/SB

would be excruciatingly slow. To see this, note that this convergence is governed by the

fact that
√

log N/N1/6 tends to 0 but very slowly. Furthermore, the N−1/6 factor given

above is under the scenario of exponential decay of the correlations; under the polynomial

decay of part (i) of Theorem 3.2 the convergence is even slower (and may well break down

in the case r = 1). It is for this reason that N = 800 does not seem to be a sample size

large enough to ensure that FARE
CB/SB

is close to ARE
CB/SB

.

σ2∞ Eσ̂2
b̂opt,SB

Eσ̂2
b̂opt,CB

MSEb̂opt,SB MSEb̂opt,CB FARE
CB/SB

ρ = 0.7, N = 200 11.111 7.016 7.787 25.691 22.569 0.878

N = 800 11.111 8.808 9.433 10.555 8.421 0.798

ρ = 0.1, N = 200 1.235 1.063 1.132 0.059 0.055 0.940

N = 800 1.235 1.101 1.157 0.030 0.021 0.712

ρ = −0.4, N = 200 0.510 0.699 0.553 0.074 0.028 0.381

N = 800 0.510 0.619 0.543 0.023 0.008 0.363

Table 4: The true σ2∞, and the mean and MSE of its two estimators based on estimated

block size; the last column indicates the finite-sample attainable relative efficiency (FARE)

of the SB relative to the CB.
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Returning to Table 3, note that Theorem 3.3 (ii) leads us to expect that b̂opt,CB/bopt,CB =

1 + OP (
√

log N/
√

N). This fact is again generally supported by our simulation but special

note must be made regarding the 3rd and 5th row of the table where the standard deviation

seems too large. To fix ideas, we focus on the 3rd row as the phenomenon is similar for the

5th row.

Figure 2 shows a histogram of the distribution of our estimator b̂opt,CB for ρ = 0.1 in the

two cases: Figure 2(a) for N = 200 and Figure 2(b) for N = 800. In particular, the center

of location—whether measured by a mean or median—of histogram 2(a) is approximately

equal to 3 which is quite close to the true bopt,CB . However, the histogram is somewhat

heavy-tailed: about 5% of its values are bigger or equal to 10, and the maximum value is

64 which is extreme relative to a sample size of 200.

By contrast, the histogram 2(b) is free from this undesirable existence of extreme values.

For this reason, we believe that this phenomenon is related to the automatic nature of the

simulation. As stressed in the footnote in Section 4, the rule for estimating m̂ should always

be complemented by an examination of the correlogram. Indeed, such an examination is

imperative in cases where m̂ and the resulting b̂opt,CB are unusually large, as is the case

where the latter turns out to be 64.

For example, consider a ‘problematic’ correlogram pictured in Figure 3 that corresponds

to an AR(1) model with ρ = 0.3 and N = 500. Superimposed are the bands ±c
√

log N/N

with c = 2 that was recommended in connection with KN = max(5,
√

log N); recall that

log denotes logarithm with base 10.

Following the rule proposed in Politis (2001) and outlined in the footnote to Section

3.2, we pick m̂ to be the smallest integer such that the correlogram remains within the

bands for at least KN = 5 lags after the lag m̂. By strict application of this rule, we should

pick m̂ = 6. But note that a little tweaking of the values of c and/or KN yields radically

different m̂’s, which is disconcerting. For instance, with c = 2 but KN = 6, we would be

led to m̂ = 12. Alternatively, with KN = 5 but c slightly bigger than 2, the bands would

be slightly wider and we would be led to m̂ = 1. A warning flag should be raised in such a

case and the practitioner should be vigilant.

Note that the values c = 2 and KN = max(5,
√

log N) are just recommendations, not

absolute requirements. Thus, faced with a problematic correlogram such as in Figure 3,

the practitioner must make a decision drawing upon his/her experience and information

concerning the dataset at hand. As a general guideline it should be noted that flat-top
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Figure 1: Histogram of b̂opt,SB for ρ = 0.7; the two cases: (a) N = 200 and (b) N = 800.

lag-window spectral estimators perform best with small values for M ; this guideline is in

accord with the famous “Okham’s razor” that would favor the simplest/smallest among two

models with comparable power of explaining the real world. Thus, faced with a dilemma

such as the one posed by the correlogram of Figure 3, we would forego the recommendation

c = 2 and KN = 5, and instead opt for the simple choice m̂ = 1.

5 APPENDIX: Technical proofs

Proof of Lemma 3.1 First note that by eq. (7) and (12) we have:

ARECB/SB := lim
N→∞

MSEopt,CB

MSEopt,SB
=

D
2/3
CB

D
2/3
SB

.

Thus, to bound the ARE it is sufficient to relate the quantity DCB to the quantity DSB .

Claim: 4g2(0) ≤ DSB ≤ 7g2(0).

Proof of claim: The lower bound is obvious by the positivity of the integrand (1 +

cos w)g2(w) that features in DSB. For the upper bound, note that by the Cauchy-Schwarz
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Figure 2: Histogram of b̂opt,CB for ρ = 0.1; the two cases: (a) N = 200 and (b) N = 800.
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Figure 3: A ‘problematic’ correlogram from an AR(1) model with ρ = 0.3 and N = 500.
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inequality it follows that the quantity∫ π

−π
(1 + cos w)

g2(w)
g2(0)

dw

is maximized if and only if g2(w)
g2(0) = c(1 + cos w) for some constant c; letting w = 0 shows

that c = 1/2. A simple calculation of the integral completes the proof of the claim.

From the claim, it now follows that 3 ≤ DSB
DCB

≤ 5.25, and the Lemma is proven. �

Proof of Theorem 3.2 We give the proof of part (ii); the other parts are proven in the

same manner. Observe that under the assumed conditions of part (ii) we have that

M∑
k=−M

λ(k/M)R̂(k) cos(wk) =
∞∑

k=−∞
R(k) cos(wk) + OP (

√
log N/

√
N),

i.e., ĝ(w) = g(w) + OP (
√

log N/
√

N); see Politis and Romano (1995). Since g(w) is (uni-

formly) bounded, and the term OP (
√

log N/
√

N) is uniform in w, it follows that 6

∫ π

−π
(1 + cos w)ĝ2(w)dw =

∫ π

−π
(1 + cos w)g2(w)dw + OP (

√
log N/

√
N),

i.e., D̂SB = DSB + OP (
√

log N/
√

N).

In the same vein, we can similarly show that

M∑
k=−M

λ(k/M)|k|R̂(k) =
∞∑

k=−∞
|k|R(k) + OP (

√
log N/

√
N).

An application of the delta method completes the proof.�

Proof of Theorem 3.3 Similar to the proof of Theorem 3.2.�
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[3] Bühlmann, P. and Künsch, H. (1999), Block length selection in the bootstrap for time

series, Computational Statistics and Data Analysis, 31, pp. 295-310.

[4] Carlstein, E. (1986), The use of subseries values for estimating the variance of a general

statistic from a stationary time series. Annals of Statistics, 14, 1171–1179.
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